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ABSTRACT

Meier’s topological analogue of Fatou’s theorem is shown to be sharp by
exhibiting a bounded holomorphic function in the unit disk for which no
point of a prescribed set of first category on the unit circle is a Meier point.

Let T be the unit circle and D be the open unit disk in the complex plane. We
say that almost every point of I' has a certain property, provided that the ex-
ceptional set is a subset of I" of Lebesgue measure zero. Similarly, we say that
nearly every point of " possesses a certain property, provided that the exceptional
set is a subset of " of first Baire category.

The celebrated theorem of Fatou (see [5, p. 5]) asserts that if f(z) is a bounded
holomorphic function in D, then f has an angular limit at almost every point
of I'. Lusin and Priwaloff [3, pp. 156-159] (see also [2] and [6]) have shown
that Fatou’s theorem is sharp by proving that if E is a subset of I" of measure
zero, then there exists a bounded holomorphic function in D that has no asymptotic
value at any point of E.

Meier [4, p. 330, Theorem 6] has recently obtained a topological analogue
of Fatou’s theorem that may be formulated as follows. If f(z)is a function
defined in D, and if { €T, then the cluster set of f at { is denoted by C(f,() (the
rudiments of cluster-set theory are to be found in [5]). The chordal principal
cluster set of f at { is defined to be

[T, £0 = Q Cx(£,0),

where X ranges over all chords (of the unit circle) at { and Cx(f,{) stands for the
cluster set of f at { along X. We call a point { € " a Meier point of f, provided
that

¢y [ILD=C£,)=Q,

where ‘“‘c”’ symbolizes proper set inclusion and Q represents the Riemann
sphere. Meier’s theotem asserts that if f(z) is a bounded holomorphic function
in D, then nearly every point of T is a Meier point of f.
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Before considering the question of the sharpness of this theorem, let us remark
that Meier’s theorem is not a trivial consequence of Fatou’s. For if a point { e T
at which f has an angular limit is called a Fatou point of f, then there exists in D
a bounded holomorphic function of which nearly every point of I' is a Meier
point but not a Fatou point. An example of such a function is a Blaschke product
b(z) with the property [1, p. 1070] that, for nearly every point {eT",

C,LD)=CfL)=TuUDcQ,

where C,(f,() is the radial cluster set of f at {.
Our aim is to prove the following

THEOREM. Let E be a subset of ' of first category. Then there exists a
bounded univalent holomorphic function f(z) in D such that no point of E is
a Meier point of f.

Proof. Since E is of first category, we may write
E=E/VUE, U UE,U--,

where each E, is a nowhere dense subset of I'. Denote the closure of E, by E,,
and define

E=E VE,U--UE, U-...

Since each E, is also nowhere dense, the set E’ is an F, of first category. According
to Lohwater and Piranian [2, p. 7, Theorem 1'], there exists a bounded univalent
holomorphic function f(z) in D with the property that at every point { eT", f(2)
has a radial limit, call it f({), and f({), regarded as a function of { along I', is
discontinuous at every point of E’ (and is continuous at every point of I — E’).
Now it is seen ditectly that if f(z) (z € D) has a global limit at a point { e T, then
{ is a point of continuity of the function f({) ((eT). Consequently f(z) does
not have a global limit at any point { e E’. (On the other hand, according to
Weniaminoff [7, p. 92, Lemma 2], f(z) has the global limit f() at every point
{eT — E’). This means that for every { € E’ we have

GO = {/O} = C(£0),

and hence

[LLD = ¢,

so that (1) is not satisfied, and therefore { is not a Meier point of f. Since E < E’,
the proof of the theorem is complete.
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