ON THE SHARPNESS OF MEIER'S ANALOGUE OF FATOU'S THEOREM

BY

FREDERICK BAGEMIHL(1)

ABSTRACT

Meier's topological analogue of Fatou's theorem is shown to be sharp by exhibiting a bounded holomorphic function in the unit disk for which no point of a prescribed set of first category on the unit circle is a Meier point.

Let Γ be the unit circle and D be the open unit disk in the complex plane. We say that almost every point of Γ has a certain property, provided that the exceptional set is a subset of Γ of Lebesgue measure zero. Similarly, we say that nearly every point of Γ possesses a certain property, provided that the exceptional set is a subset of Γ of first Baire category.

The celebrated theorem of Fatou (see [5, p. 5]) asserts that if $f(z)$ is a bounded holomorphic function in D , then f has an angular limit at almost every point of Γ . Lusin and Priwaloff [3, pp. 156–159] (see also [2] and [6]) have shown that Fatou's theorem is sharp by proving that if E is a subset of Γ of measure zero, then there exists a bounded holomorphic function in D that has no asymptotic value at any point of E.

Meier [4, p. 330, Theorem 6] has recently obtained a topological analogue of Fatou's theorem that may be formulated as follows. If $f(z)$ is a function defined in D, and if $\zeta \in \Gamma$, then the cluster set of f at ζ is denoted by $C(f, \zeta)$ (the rudiments of cluster-set theory are to be found in $[5]$). The chordal principal cluster set of f at ζ is defined to be

$$
\prod_x(f,\zeta) = \bigcap_x C_x(f,\zeta),
$$

where X ranges over all chords (of the unit circle) at ζ and $C_x(f, \zeta)$ stands for the cluster set of f at ζ along X. We call a point $\zeta \in \Gamma$ a Meier point of f, provided that

(1)
$$
\prod_{\chi}(f,\zeta) = C(f,\zeta) \subset \Omega,
$$

where " \subset " symbolizes proper set inclusion and Ω represents the Riemann sphere. Meier's theorem asserts that if $f(z)$ is a bounded holomorphic function in D, then nearly every point of Γ is a Meier point of f.

Received July 22, 1966.

⁽x) Supported by the U. S. Army Research Office, Durham.

Before considering the question of the sharpness of this theorem, let us remark that Meier's theorem is not a trivial consequence of Fatou's. For if a point $\zeta \in \Gamma$ at which f has an angular limit is called a Fatou point of f, then there exists in D a bounded holomorphic function of which nearly every point of Γ is a Meier point but not a Fatou point. An example of such a function is a Blaschke product *b(z)* with the property [1, p. 1070] that, for nearly every point $\zeta \in \Gamma$,

$$
C_{\rho}(f,\zeta) = C(f,\zeta) = \Gamma \cup D \subset \Omega,
$$

where $C_{\rho}(f,\zeta)$ is the radial cluster set of f at ζ .

Our aim is to prove the following

THEOREM. Let E be a subset of Γ of first category. Then there exists a *bounded univalent holomorphic function f(z) in D such that no point of E is a Meier point off.*

Proof. Since E is of first category, we may write

$$
E = E_1 \cup E_2 \cup \cdots \cup E_n \cup \cdots,
$$

where each E_n is a nowhere dense subset of Γ . Denote the closure of E_n by \bar{E}_n , and define

$$
E' = \bar{E}_1 \cup \bar{E}_2 \cup \cdots \cup \bar{E}_n \cup \cdots
$$

Since each \bar{E}_n is also nowhere dense, the set E' is an F_a of first category. According to Lohwater and Piranian [2, p. 7, Theorem 1'], there exists a bounded univalent holomorphic function $f(z)$ in D with the property that at every point $\zeta \in \Gamma$, $f(z)$ has a radial limit, call it $f(\zeta)$, and $f(\zeta)$, regarded as a function of ζ along Γ , is discontinuous at every point of E' (and is continuous at every point of $\Gamma - E'$). Now it is seen directly that if $f(z)$ ($z \in D$) has a global limit at a point $\zeta \in \Gamma$, then ζ is a point of continuity of the function $f(\zeta)$ ($\zeta \in \Gamma$). Consequently $f(z)$ does not have a global limit at any point $\zeta \in E'$. (On the other hand, according to Weniaminoff [7, p. 92, Lemma 2], $f(z)$ has the global limit $f(\zeta)$ at every point $\zeta \in \Gamma - E'$). This means that for every $\zeta \in E'$ we have

$$
C_{\rho}(f,\zeta) = \{f(\zeta)\} \subset C(f,\zeta),
$$

and hence

$$
\prod_x(f,\zeta)\subset C(f,\zeta),
$$

so that (1) is not satisfied, and therefore ζ is not a Meier point of f. Since $E \subseteq E'$, the proof of the theorem is complete.

232 FREDERICK BAGEMIHL

REFERENCES

I. F. Bagemihl and W. Seidel, *A general principle involving Baire category, with applications to function theory and other fields, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 1068-1075.*

2. A. J. Lohwater and G. Piranian, *The boundary behavior of functions analytic in a disk,* Ann. Acad. Sci. Fennicae A I, 239 (1957), 1-17.

3. N. Lusin and J. Priwaloff, *Sur l'unicit6 et la multiplicit6 des fonctions analytiques, Ann.* Sci. École Norm. Sup. (3), 42 (1925), 143-191.

4. K. Meier, *Ober die Randwerte der meromorphen Funktionen,* Math. Ann., 142 (1961), 328-344.

5. K. Noshiro, *Cluster Sets,* Berlin, 1960.

6. W. Schneider, *On the impossibility of sharpening the Fatou radial limit theorem* (to appear).

7. V. Weniaminoff, Sur un problème de la représentation conforme de M. Carathéodory, Recueil Math. Soc. Math. Moscou, 31 (1922), 91-93.

UNIVERSITY OF WISCONSIN-MILWAUKEE MILWAUKEE, WISCONSIN